
14  

9th cidb Postgraduate Conference 

February 2-4, 2016, Cape Town, South Africa. 

“Emerging trends in construction organisational practices and project management knowledge area” 
 

 

FORECASTING CONSTRUCTION DEMAND: A COMPARISON 

OF BOX-JENKINS AND SUPPORT VECTOR MACHINE MODEL 

 
Lam, Ka Chi; Oshodi, Olalekan Shamsideen; Lee, Eric Wai Ming   

Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, 

China 

 

Abstract 
The construction industry provides infrastructure which are needed to drive the process of 

economic development. Despite its importance, the demand for construction industry's 

product tends to fluctuate with changes in the economic climate. These unforeseen events 

have negative impact on the productive capabilities of the construction sector. In order to 

formulate strategizes and policies to minimize the impact of such fluctuations, there is a 

need to developed predictive models that can reliably and accurately predict such 

unforeseen events. In the study reported here, two univariate modelling (support vector 

machine and Box Jenkins) techniques were used to predict demand in the Hong Kong 

Construction market. The results of predictive accuracy test suggest that the support vector 

machine (SVM) and the Box Jenkins are both satisfactory for forecasting construction 

demand. However, the SVM model achieves higher prediction accuracy than the Box 

Jenkins model. The findings validate the reliability of using artificial intelligence models 

in predicting construction demand. The findings and robust modelling techniques are 

valuable to both developed and developing countries when estimating future demand 

patterns of construction demand. 
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1 Introduction 
Almost every publication in the field of construction economics have shown that the 

construction sector plays an important role in the economic development process of any 

country (see Low and Leong, 1992; Han and Ofori, 2001). The construction sector provides 

constructed space for economic activities, employment and utilizes goods and services of other 

sector of the economy during the production process. However, empirical evidence has shown 

that changes in the macro-economic environment causes fluctuations in the output of the 

construction industry (Goh 2005; Jiang et al. 2013). In addition, findings from Wong and Ng 

(2010) shows that Gross Domestic Product, Construction output and tender price are closely 

correlated. Therefore, the cyclic behaviour of tender price index linked to changes in the 

economy of Hong Kong (due to Asian Financial Crisis of 1997, Severe Acute Respiratory 

Syndrome of 2003, etc.) would result in the fluctuations in construction industry's output 

(hereafter referred to as construction output). Thus, in order to sustain the growth of the 

economy, constant monitoring of the construction industry is vital. 

Cyclic construction output is a problem in both developed and developing countries. This 

cyclic behaviour creates fluctuations in construction output which has an adverse effect on the 

construction industry. Fluctuations in construction output leads to employee turnover, loss  of 
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knowledge and experience gained in projects, bankruptcy of construction organisations and 

increased competition among contractors (Ofori et al. 1996; Lam and Oshodi 2015; Ren and 

Lin 1996; Soo ad Oo 2014). Also, unplanned expansion of the construction sector due to 

increase in government investments often fail to achieve intended outcomes. This is evident in 

the studies reported on Nigerian (Awotona, 1990) and Trinidad and Tobago (Lewis, 1984). 

Therefore, it has become increasing important to implement forward planning policies for the 

construction sector so as to sustain economic growth and avoid economic waste. 

Accurate and reliable forecasting of future construction output is crucial to developing strategic 

long term plans for the construction sector. Goh (1998) asserts that insight into future volumes 

of construction output will assist stakeholders (such as property developers) to optimize profits. 

Similarly, governments can use forecast information to develop intervention policies meant to 

minimize the impact of changes in construction output. Australian government’s stimulus plan 

after the global financial crisis is a good illustration of such government interventions (Jiang et 

al. 2013). It is evident that reliable forecast of future levels of construction output is crucial for 

all stakeholders. The aim of the study reported in this paper is to apply two univariate modelling 

(i.e. Box Jenkins and Support Vector Machine) techniques to forecast future volumes of 

construction output using Hong Kong as a representative case. 
 

2 Literature Review 
The importance of an accurate and reliable construction output forecast has been established in 

the preceding section. Despite its importance, construction output forecasting research has been 

limited when compared to studies such as construction cost forecasting. Limited number of 

studies can be linked to lack of statistical data on construction output, problems in the data 

collection process and lack of statistical data on other variables that influence construction 

output (K'Akumu, 2007; Wong and Ng, 2010). To address this problem, studies (such as 

Gruneberg and Folwell, 2013) have explored the possibility of using construction component 

of gross fixed capital formation (GFCF) as a proxy of construction output. It was found that 

construction output, GFCF and the construction component of GFCF are closely related. 

Though, there might still be a need for further research to validate this finding. The results of 

Gruneberg and Folwell’s study is important to researchers in most developing countries, where 

data on construction output is largely unavailable. This is because statistical data on GDP and 

GFCF are reported in most cases to meet the requirements of donor and global funding 

agencies. 

In construction output forecasting literature, there is an evident preference for quantitative 

modelling techniques. This can be attributed to accuracy and the ability to reproduce forecast 

generated from this technique when compared with qualitative approaches. Also, construction 

output forecasting is largely a time series problem (i.e. the relationship between variables in 

the past are used for future prediction of the dependent variable). Although multivariate models 

have shown good predictive capability when compared with univariate models (Goh 1996), 

this finding does not always hold. For instance, Fan et al. (2010) demonstrated that Box-Jenkins 

(univariate) model outperforms multiple regression (multivariate) model in predicting 

construction output of Hong Kong. Poor choice of selection of independent variables and the 

presence of auto-correlated errors have been attributed to inaccurate forecast from multivariate 

methods (Akintoye and Skitmore, 1994; Killingsworth, 1990). In addition, the application of 

multivariate modelling techniques is subject to availability of data on explanatory variables. 

Thus, it is imperative to identify univariate techniques that produce reliable and accurate 

forecast. 

A wide variety of time series modelling techniques have been applied to construction output 

forecasting  problems.  Univariate  modelling  techniques  can  be  grouped  into  two    broad 
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categories: econometrics (statistical) and artificial modelling techniques. Econometric 

techniques such as Box-Jenkins was applied to construction demand forecasting for Singapore 

(Goh and Teo, 2000), Hong Kong (Fan et al., 2010) and the United Kingdom (Notman et al., 

1998). Similarly, artificial intelligence modelling techniques have also been applied to 

construction demand forecasting problems in Singapore (Goh, 2000). Evidences shows that 

artificial intelligence models tend to produce more reliable and accurate forecast when 

compared with econometric models (Goh, 1996; Goh, 1998). This can be attributed to the 

capability of artificial intelligence models (e.g. artificial neural network) to capture nonlinear 

characteristics of construction demand data. There is little published data on application of 

support vector machine to construction output forecasting (see Fan et al., 2007). Therefore, this 

study sets out to apply SVM to predict construction output in the short and medium term. The 

result of this forecast is compared with those of Box-Jenkins approach which is considered a 

benchmark as suggested in Goh and Teo (2000). 
 

3 Model Development 

3.1 Construction Output 

Construction output which measures the volume of construction works by executed main 

contractors within a defined time frame is collected from the Census and Statistics department 

of Hong Kong (CSD-HK). In Hong Kong, the construction output time series data is available 

from CSD-HK between 1983 and 2014 is presented in Figure 1. The cyclic behaviour (i.e. 

fluctuations) of construction output series appears to be related with changes in the economy 

and market conditions which shows the effect of the Asian financial crisis of 1997, SARS 

outbreak of 2003 and global financial crisis experience towards the end of 2008. 
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Figure 1. Value of construction demand (data from various years by Census and Statistics Department of 

Hong Kong) 

 
3.2 Box Jenkins Modelling 
Box Jenkins modelling technique is a combination of autoregressive (AR) and moving average 

(MA) model with differencing which was suggested by Box and Jenkins in 1976. This method 

is also often referred to as Autoregressive Integrated Moving Average (ARIMA) modelling 

approach. The process of applying Box Jenkins approach to time series forecasting is an 

iterative process which involves three major steps: identification, estimation and diagnostic 

checking, and application. The process is depicted in Appendix 1. The Box Jenkins model   is 
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implemented using the ‘Arima’ code which is part of the forecast package in R programming 

(Hyndman et al., 2015). Also, the augmented Dickey-Fuller (ADF) and Box-Ljung (referred to 

as portmanteau) test used in this study are found in ‘urca’ and ‘stats’ package in R, respectively 

(Pfaff, 2013; R Core Team, 2015). For a detailed explanation on the procedure of fitting time 

series data to a Box Jenkins model (see Hyndman and Athanasopoulos, 2013). 
 

3.3 Support Vector Machine (SVM) 
SVM is an artificial intelligence modelling techniques that has a capability to capture nonlinear 

behaviour. The SVM algorithm was built based on theoretical foundations found in statistical 

learning (Vapnik, 1995). Subsequently, this method was later adopted in machine learning and 

statistics. In addition, SVM has been extensively applied to solving classification and 

regression problems (see Bin et al. 2006; Lam et al. 2009). This clearly shows that SVM model 

could be used as a tool for predicting construction output. This is based on the results that 

emanates from Goh’s (1998) study. The detailed explanation and proofs of SVM can be found 

in Vapnik (1995) and Vapnik (1998). 

The SVM creates a binary classifier, called hyperplane, which maps the input vectors into a 

high-dimension feature space. Subsequently, the regression problem is solved in the new space. 

The regression SVM can be represented in the following mathematical form: 

y f ( x) b (1) 

The main task is to identify a functional form (f) which can correctly predict new cases that has 

not been used to train the model (i.e. test set). The function is estimated by using the Sequential 

Minimum Optimization (SMO) of an error function (Vapnik, 1995). With the introduction of 

slack variables (equation 2), the coefficients can be estimated by minimizing the error function 

of the SVM: 

1 N N 

w  w  C i  C i   (2) 
2 

Subject to: 

i1 i1 

wT (x ) b y 
T 

* 

yi  w (xi ) bi  i 

,* 0, i 1,..., N 
i i 

By introducing Lagrangian multipliers which are solvable under Karush-Kuhn-Tucker 

conditions, the solution of constrained optimization problem is determined. Once the Lagrange 

multipliers are found, the functional form of the regression SVM model can be expressed as: 
n 

f (x)  ( i    i  )K xi , x j  b (3) 
i1 

 

where, K (.) is the kernel function. 

Although other types of kernel functions (e.g. polynomial) exist, the Radial Basis Function 

(RBF) is used in this study. This can be attributed to its performance and frequency of use in 

similar previous studies (Bin et al., 2006). In this study, the SVM model was implemented 

using the SVM with SMO algorithm (named "SMOreg") provided in WEKA (Waikato 

Environment for Knowledge Analysis) software (Hall et al., 2009). For a detailed explanation 

on implementing SVM in WEKA, we refer readers to Witten et al. (2011). The process of 

fitting a SVM model to time series data in this study entailed: dividing collected data into two 

sets (training and test), import data into the WEKA software, initialize the parameters of   the 

i 
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SVM model, and adjusting of the individual parameters of the SVM algorithm until the 

adequate parameters are identified. 
 

4 Model Implementation 

4.1 Box Jenkins model 

Stationarity is critical to applying the Box Jenkins model to time series data, ACF and PACF 

plots presented in Figure 2 is used to check if the data is stationary. Figure 2 shows that the 

data in not stationary. The ACF plots gradually die down. Therefore, the first difference is 

computed and the ACF of the first differenced series is presented in Figure 3. Non-presence of 

the dying down pattern in the ACF plot suggests that the first differenced series is stationary. 

ADF test is applied to validate this hypothesis. The ADF shows that the first difference series 

can be fitted to Box Jenkins model. The parameters of the best fit Box Jenkins model is 

presented in Table 3-6, the best fit model is selected based on the lowest AICc values as 

suggested in Hyndman and Athanasopoulos (2013). Subsequently, the residuals of the tentative 

model are checked for serial correlation. The ACF (Figure 4) and portmanteau test confirms 

that the residuals are white noise. Absence of serial correlation in the residuals of the final Box 

Jenkins model indicates the model passed validation test. Thus, the fitted Box Jenkins model 

is considered adequate. The results of the fitted Box Jenkins model is presented in Table 1.The 

final form of models for construction outputs is: 

Construction output: 
' ' ' ' ' ' 

yt 1 yt1 2 yt2 3 yt3 4 yt4 5 yt5 (4) 

 

where y
' 
is yt y 

 
 

t 1 

 

(construction output variable first-difference);  is the AR coefficient; and 

e is the random error term (lagged errors). 

The out-of-sample forecast generated with the final Box Jenkins model (2013 Q1 -2014Q4) are 

given in Table 2. 
 

 

Figure 2. ACF and PACF of ‘construction output’ 
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Figure 3. ACF and PACF of first differences of ‘construction output’ 

 

 

Figure 4. Autocorrelation of residuals of the fitted Box Jenkins (5,1,0) model 

 
Table 1. Estimates of the parameter of the ARIMA (5,1,0) model for total constrution output 

 

 AR(1) AR(2) AR(3) AR(4) AR(5) 

Coefficient -0.2953 0.0003 -0.1205 0.4712 0.2324 

Std. error 0.0953 0.0899 0.0889 0.0900 0.0957 

 

4.2 SVM 
The parameters of the SVM algorithm used in training the model affects it performance. 

Although, grid search of the parameter space could give better results, the parameters were 

manually tuned. This is similar to the approach used in Bell et al. (2012). The optimal 

parameters   used   in   the   SVM   model   are   (C,,   learning   algorithm)   =   (32,    0.01, 

RegSMOImproved). The final SVM model is fitted to the data series to produce out of sample 

forecast (2013 Q1 -2014Q4) which served as a basis for evaluating the accuracy of forecast 

(Table 3). 
 

4.3 Predictive Accuracy of Forecasting Models 

Out-of-sample test is performed to evaluate the predictive reliability of the developed models 

SVM and conventional forecasting model (i.e. Box Jenkins), low variance between actual and 

predicted construction output (in the test data set) signifies better forecasting performance is 

achieved. In construction output forecasting studies, results of MAPE test that are lower than 

10% are considered acceptable. In addition, Theil’s inequality U coefficient value closeness to 

zero signifies better prediction results is achieved (see Goh and Teo, 2000; Jiang and Liu, 2011 

for more detailed explanation and equations). 

The actual values and out-of-sample forecast value generated from the Box Jenkins and the 

SVM model are presented in Table 2 and 3, respectively. Three relative measures of accuracy 

(PE, MAPE and U coefficient) were used to evaluate the predictive accuracy of the developed 
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construction output models (Table 4). For both models, the values of MAPE test are less than 

10% absolute error and the coefficients U are all close to 0. This indicates that the forecast 

generated by the models can be considered as satisfactory. In addition, the forecast generated 

by the SVM model achieved lower MAPE and U values show that the SVM model outperforms 

the conventional Box-Jenkins approach. Furthermore, the results of the evaluation of predictive 

accuracy test suggest that the SVM gives a more reliable and accurate forecast of construction 

demand. 

 
Table 2. Out-of-sample forecast generated by the Box Jenkins model 

 

Period Actual Forecast Error 

2013, Q1 32900 34935.04 -2035.04 

2013, Q2 31788 35318.22 -3530.22 

2013, Q3 30384 34230.43 -3846.43 

2013, Q4 34796 37378.05 -2582.05 

2014, Q1 34785 37371.05 -2586.05 

2014, Q2 33337 37475.28 -4138.28 

2014, Q3 33031 36641.74 -3610.74 

  2014, Q4   37132   38119.21   -987.21   

 

Table 3. Out-of-sample forecast generated by the SVM model 
 

Period Actual Forecast Error 

2013, Q1 32900 33910.8 -1010.8041 

2013, Q2 31788 34178.24 -2390.2443 

2013, Q3 30384 33895.57 -3511.5739 

2013, Q4 34796 34831.98 -35.9831 

2014, Q1 34785 33835.98 949.0157 

2014, Q2 33337 33700.58 -363.5812 

2014, Q3 33031 33245.3 -214.3005 

  2014, Q4   37132   32884.02   4247.9842   

 

Table 4. Summarized results of evaluating predictive accuracy 
 

Period Box Jenkins 

Model 

SVM 

model 

PE for 2013, Q1 -6.19 -3.07 

PE for 2013, Q2 -11.11 -7.52 

PE for 2013, Q3 -12.66 -11.56 

PE for 2013, Q4 -7.42 -0.10 

PE for 2014, Q1 -7.43 2.73 

PE for 2014, Q2 -12.41 -1.09 

PE for 2014, Q3 -10.93 -0.65 

PE for 2014, Q4 -2.66 11.44 

MAPE 8.85 4.77 

  U   0.0440   0.0324   

 

5 Discussion, Conclusion and Further Research 
Construction demand forecasting is vital to the development of strategic future plans for the 

construction sector. Previous studies have demonstrated that the Box Jenkins model can be 

used to predict demand, productivity and prices in the construction market (Goh and Teo, 2000; 

Fan et al., 2010). However, it has been found that construction demand exhibit nonlinear 

characteristics. This suggests nonlinear models (such as SVM) possess the capacity to generate 

reliable and accurate predictions of construction demand. The main purpose of the current 

study is to compare two univariate modelling techniques (Box Jenkins and SVM), in order to 

identify and assess the predictive capability of both approaches. The out-of-sample forecast 
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generated between first quarter of 2013 and fourth quarter of 2014 served as a basis for 

evaluating the predictive performance of these two models. 

The high predictive accuracy achieved by the SVM model when compared with Box Jenkins 

model (Box Jenkins model is considered as a benchmark for univariate model as suggested in 

Goh and Teo, 2000). This indicates that the SVM model can reliably and accurately forecast 

construction demand in Hong Kong. In addition, the finding indicates that artificial intelligence 

models (SVM) tend to outperform linear models. These results are in agreement with those 

obtained by Goh in 1998. Though previous studies (such as Goh and Teo, 2000) suggest that 

Box Jenkins model might not be suitable for medium and long-term forecast, one unanticipated 

finding was that the Box Jenkins model could generate satisfactory forecast for 8-quarters 

ahead. A possible explanation for this might be the relative stability of the construction demand 

data series in the forecast period. In general, therefore, it seems that artificial intelligence 

models (such as SVM) can be applied to construction demand forecasting problems under 

different circumstances. 

The major limitation to this study is the absence of other explanatory variables in the developed 

models. Despite this limitation, the intended objective of the study was achieved. It is worth 

nothing that the univariate modelling techniques applied in the current study could be useful in 

cases of limited data which affects the possibility of developing large multivariate models. The 

findings from this study enhance the knowledge on the applicability of univariate modelling 

techniques to construction demand forecasting problems. Overall, the SVM model developed 

in this study can be used as a tool for predicting future volume of construction demand. Reliable 

forecast of construction demand is vital for developing and implementing strategies to 

minimize the adverse impact of fluctuating demand. 
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Appendix 1 Process of fitting a Box-Jenkins model (Adapted from Hyndman 

and Athanasopoulos, 2013) 
 

 

 

 

 

 

 Calculate forecast 

Fit the candidate models and identify the model with the lowest AICc value 

Check the residuals of the chosen model using ACF plots and portmanteau. 

no 

Are the residuals white noises? 

 
yes 

Plot the collected data to understand the patterns that exist in the series 

Transform 
differencing 

data by 

and using 

Box-Cox transformation 

Check that the data series is stationary 
using ACF and unit-root test 

stationary 
Non-stationary 

   


